Orthogonal and Symplectic Matrix Integrals and Coupled KP Hierarchy

نویسنده

  • Saburo Kakei
چکیده

Over the past decade, the intimate relationships between matrix integrals and nonlinear integrable systems have been clarified, particularly in the context of string theory. In such cases, nonperturbative properties of physical quantities can be evaluated by the use of the integrable structures of the models. (For review, see refs. 1-4.) Here, we consider a matrix integral over an ensemble of Hermitian matrices

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Algorithms for Orthogonal Symplectic Factorizations

On the basis of a new WY -like representation block algorithms for orthogonal symplectic matrix factorizations are presented. Special emphasis is placed on symplectic QR and URV factorizations. The block variants mainly use level 3 (matrix-matrix) operations that permit data reuse in the higher levels of a memory hierarchy. Timing results show that our new algorithms outperform standard algorit...

متن کامل

Toda versus Pfaff Lattice and Related Polynomials

The Pfaff lattice was introduced by us in the context of a Lie algebra splitting of gl (∞) into sp (∞) and an algebra of lower-triangular matrices. The Pfaff lattice is equivalent to a set of bilinear identities for the wave functions, which yield the existence of a sequence of “τ -functions”. The latter satisfy their own set of bilinear identities, which moreover characterize them. In the semi...

متن کامل

New solvable Matrix Integrals

We generalize Harish-Chandra-Itzykson-Zuber and certain other integrals (Gross-Witten integral and integrals over complex matrices) using the notion of tau function of matrix argument. In this case one can reduce matrix integral to the integral over eigenvalues, which in turn is certain tau function. Soliton theory. KP hierarchy of integrable equations, which is the most popular example, consis...

متن کامل

The Pfaff lattice on symplectic matrices

Abstract. The Pfaff lattice is an integrable system arising from the SR-group factorization in an analogous way to how the Toda lattice arises from the QR-group factorization. In our recent paper [Intern. Math. Res. Notices, (2007) rnm120], we studied the Pfaff lattice hierarchy for the case where the Lax matrix is defined to be a lower Hessenberg matrix. In this paper we deal with the case of ...

متن کامل

D-particles, matrix integrals and KP hierarchy

We study the regularized correlation functions of the light-like coordinate operators in the reduction to zero dimensions of the matrix model describing D-particles in four dimensions. We investigate in great detail the related matrix model originally proposed and solved in the planar limit by J. Hoppe. It also gives the solution of the problem of 3-coloring of planar graphs. We find interestin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999